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On the motion of a spherical bubble deforming near a plane wall
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Abstract. Equations of motion are derived for an expanding spherical bubble in potential flow near a plane wall
using the Lagrange-Thomson method and an extended Rayleigh dissipation function to account for the drag. This
method is shown to yield the same acceleration of the bubble center as that obtained using the Lagally theorem.
An extended Rayleigh-Plesset equation is derived to describe deformation in the vicinity of a plane wall, and
expressions relating the drag force to the distance from the wall and the bubble growth rate are derived. The
solution method for the velocity potential can also be applied to the case of non-spherical deformation.

Key words: bubble dynamics, deformable body, Lagally theorem, drag force, Lagrangian method, Rayleigh
dissipation function.

1. Introduction

Bubble detachment from surfaces and subsequent oscillatory motion occur in engineering
processes involving phase-change transition. To predict the bubble size and analyze the dy-
namics of the unsteady motion after detachment, accurate information on the magnitude of
the inertial and drag forces exerted on bubbles near a plane wall is required. Even if turbu-
lence and boundary layers on walls are neglected, the engineering prediction of bubble size
at detachment is limited by a lack of knowledge. Usually expressions for forces exerted on
solitary bubbles in an infinite liquid are gathered in a force balance, and empirical constants
are introduced to fit experimental results for bubbles detaching from a plane wall [1, 2].
Several authors presented numerical predictions (see Yuan and Prosperetti [3] and Pelekasis
and Tsamopoulos [4]), but these predictions do not yield expressions for the forces on the
bubble as a whole that can be used for engineering prediction. Existing analytical solutions do
yield general expressions, but are only available for bubbles far away from a wall, i.e., for an
infinite liquid.

Solutions of the Rayleigh–Plesset (R.P.) equation for a radially expanding spherical bubble
in an unbounded incompressible fluid have been used to generate simple expressions for the
force and bubble growth rate. The R.P. equation is usually derived by integration of the full
radial Navier–Stokes equation [5]. Analytical solutions of the R.P. equation proved useful for
the undertanding and engineering prediction of cavitation and boiling phenomena [6] in the
absence of walls.

A mirror bubble can be introduced to account for the presence of a wall, yielding a system
of two equally sized bubbles pulsating in phase. The study of the hydrodynamic interaction
of two linearly oscillating bubbles has a long history dating back to Bjerknes. This linear
theory is well understood [7–9]. Nonlinear oscillions have been studied by several authors in
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the last decade mainly by numerical methods, see, e.g., [4]. Oguz et al. [10] derived a set of
generalized impulse and virial theorems and found some approximate solutions.

A powerful formalism to generate analytical results is provided by the Lagrange-Hamilton
theory. Constants of motion are readily generated, and the relation between symmetries and
conservation laws are unraveled [11]. The formalism allows for non-uniform flow fields [12]
and can accommodate concepts of statistical mechanics [13]. The Lagrangian approach was
first applied to the motion of a finite number of solids in a frictionless fluid by Thomson and
Tait [14, Chapter 6], and Kirchhoff [14, Chapter 6]. Approximate solutions for the case of a
single solid sphere in the presence of an infinite plane wall, in particular, were given in [14,
Section 137]. In the 1970s the Lagrangian approach was applied by Hermans [15, Chapter 2]
to study the stability of a translating gas bubble in an unbounded fluid under the influence of
a step change in pressure. In the 1980s, Kok [16, 17] applied the method to study the motion
of a pair of gas bubbles with constant radius in an unbounded fluid.

The present paper analyzes the forces exerted on, and the motion of a spherically deform-
ing bubble in the vicinity of a plane infinite wall, occurring when capillary forces dominate
inertial forces. Ideal-flow theory is applied since only bubbles at Reynolds numbers greater
than 100 are considered. At these Reynolds numbers, the ratio of capillary to non-viscous
hydrodynamic stresses, the Weber number, governs stability and bubble shape [18, 19]. The
Lagrangian approach is used to derive the coupled equations of motion and deformation. Drag
is accounted for by an extended Rayleigh dissipation function that enables us to account for the
free-surface boundary layer. An alternative derivation of this equation will be given, and the
R.P. equation will be extended to describe an imploding cavity moving in the vicinity of a wall.
Moreover, a new solution method for the velocity potential that is systematic and applicable to
general deformation will be introduced. The consistency of results obtained by the Lagrangian
approach or by the Lagally theorem will be examined, and erroneous expressions derived by
previous authors will be pointed out.

In Sections 2–5, the flow field and forces for an exanding spherical bubble in motion
perpendicular to the wall will be studied. In Section 6, arbitrary motion of the center of mass
will be considered. In Section 7, expressions for the drag forces for this case of general motion
will be derived. Some examples of computed trajectories will be presented in Section 8.

2. Irrotational flow around a deforming bubble near a plane wall

In this section, added-mass coefficients and kinetic energy of the irrotational flow around an
isotropically deforming bubble moving perpendicular to a plane wall are computed. In subse-
quent sections, the results will be used to compute the inertial and drag forces exerted on the
bubble, the motion of the bubble centre induced by the expansion, and resulting trajectories.
As explained in Section 1, such predictions can be used to analyze the growth of a boiling
bubble near a hot plate. In the case of a rapidly growing boiling bubble, the free-surface
boundary layer has a negligible contribution, and the use of ideal-fluid theory is appropriate.
It will be assumed that capillary forces dominate inertial forces and that potential-flow theory
can be applied.

The method introduced in this section to compute the harmonic velocity potential, φ, is a
new systematic approach that can easily be applied to the case of arbitrary deformation of a
bubble moving near a plane wall. The normal velocity at a point of the bubble interface, xc,
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Figure 1. Coordinate systems and schematic of bubble system.

is1 equal to the normal component of the liquid velocity, v:

n · dxc
dt

= n · v(xc, t), (1)

where n is the unit normal pointing into the liquid. For spherical deformation and velocity
field describe by the potential φ, i.e., v = ∇φ, Equation (1) yields:

∂φ

∂r

∣∣∣∣
r=R

= Ṙ − U cos θ = Ṙ Po − U P1(cos θ), (2)

where R is the radius of the bubble, Ṙ
def= ∂R/∂t , (r, θ) is a spherical coordinate system

centered at the bubble center that moves with the bubble-center velocity U away from the wall,
as shown in Figure 1, and Pq is a Legendre polynomial of zeroth order. The usual approach
to satisfy Equation (2) is to decompose the flow into two separate components expressing
translation and expansion, and to sum the resulting two velocity potentials in order to get φ. In
the case of arbitrary deformation the right-hand side of Equation (2) would require an infinite
series of orthogonal polynomials, and the question whether the decomposition method yields
a converging solution would arise. The method presented below is straightforward, avoids the
need of decomposing into subproblems and answers intrinsically the question of convergence.

In the laboratory frame with Cartesian coordinate system {ei} as shown in Figure 1 the
wall is stationary. Let z be twice the distance of the bubble center from the plane wall. To
simplify the algebra in the first few sections, the motion of the bubble is restricted to direction
e3; in Section 6, the motion will be generalized. The wall is modeled by a mirror bubble, B,
as shown in Figure 1. The flow field is described by a velocity potential, φ, that is comprised
of two multipole expansions, one centered at the actual bubble, A, with coefficients {ak}, and
one centered at the mirror bubble, B, with the same coefficients for reasons of symmetry. With
the aid of the shift formula [20], the flow potential is written for r < z in terms of multipoles

1Here it is assumed that the ratio of the mass density of the vapor in the bubble, ρv , to that of the liquid, ρl , is
much less than 1. This is the case in many boiling applications.



94 C.W.M. van der Geld

centered at A only:

φ =
∞∑
k=1

Pk−1(cos θ)


ak r−k +

∞∑
q=1

(
q + k − 2

k − 1

) (
r

z

)k−1

z−q aq


 . (3)

Equation (3) is a general solution of the Laplace equation �φ = 0 for a system of two equal
bubbles. For future reference, the set of coefficients {ãk} is defined by

ãk = R−k ak. (4)

Let l2(φ) denote the Hilbert space of the real coefficients (a1, a2, a3, . . . ) satisfying
∞∑
i=1

a2
i < ∞. To solve for (a1, a2, a3, . . . ), it is expedient to define the compact operator F

on l2(φ) with the aid of the matrix representation using the standard orthonormal basis:

Fi j
def= −δi j + i − 1

i
R2i−1 z−i−j+1

(
i + j − 2

i − 1

)
, (5)

where δij denotes the Kronecker delta. Since the Legendre polynomials are orthogonal, the
boundary condition (2) requires

∞∑
j=1

Fi j aj = R2 Ṙ δi1 − 1
2 R

3 U δi2. (6)

Let the case that both Ṙ = 0 and U = 0 be considered as trivial and excluded from the
analysis. Define α by α

def= F + I with Iij
def= δij . A sufficient condition for F to have

an inverse is that α is a Hilbert–Schmidt operator, i.e.,
∞∑

i,j=1

∣∣αi j

∣∣2 < ∞, for the following

reason. Suppose that α is a Hilbert-Schmidt operator. Each Hilbert–Schmidt operator is com-
pact; according to the Fredholm alternative either 1 is an eigenvalue of α , or α − I has an
inverse. If 1 would be an eigenvalue of α , then a non-zero element {ai} of l2(φ) would exist,

such that
∞∑
j=1

α1 j aj − a1 would be equal to zero. Because of Equation (6), this can not be the

case if R2 Ṙ or R3 U is selected to be non-zero. If therefore the trivial case (both Ṙ = 0 and
U = 0) is excluded from the analysis, 1 is not an eigenvalue of α . According to the Fredholm
alternative, α − I has an inverse. This means that F has an inverse if α is a Hilbert-Schmidt
operator2 .

Is is shown in Appendix 9 that rescaling might be required for α to be a Hilbert-Schmidt
operator, but that an operator G can be defined, based on the set {ãk} rather than on {ak},
whose inverse unconditionally exists and which only depends on (R/z).

Equation (6) yields

aj = F−1
j1 R2 Ṙ − 1

2 R
3 U F−1

j2 . (7)

2Note that if α is a Hilbert–Schmidt operator, F has a kernel, as is a requirement for the numerical boundary-
element method (not applied here) to be applicable.
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To solve the infinite set of equations, the method of reduction [21] is used. In case of
Equation (7) this implies that all aj with j > n are put equal to zero, and F−1 is determined
with the aid of Equation (5). Since the linear space spanned by the basis vectors is dense in
l2(φ), the solution ã of Equation (7) is in this way approximated with an arbitrary degree of
accuracy. Sample computations are given in Section 8.

In the remainder of this section, expressions for the added-mass coefficients will be de-
rived. In order to simplify the expressions of the added-mass coefficient and the kinetic energy
of the fluid, and also to facilitate comparison with the Lagally theorem in Section 4, the
following property of the operator F−1 is derived in Appendix 9:

F−1
i j

(
j − 1

j

)
R2j−1 = F−1

j i

(
i − 1

i

)
R2i−1. (8)

One of the important consequences of Equation (8) is that

F−1
(i+1)1 =

( ∞∑
l=2

z−l F−1
l(i+1)

)
i

i + 1
R2i+1, (9)

as proved in Appendix 9.
An immediate consequence of Equation (7) is that the velocity potential φ is the sum of

two parts:

φ = vc · � + Ṙ χ, (10)

where


� = e3 �3
def= −e3

1
2 R

3

[ ∞∑
i=1

F−1
i2 r−i Pi−1 +

+
∞∑

j,k=1

F−1
j2 z−j−k+1

(
k + j − 2

k − 1

)
rk−1 Pk−1

]
, (11a)

χ = R2


 ∞∑

i=1

F−1
i1 r−i Pi−1 +

∞∑
j,k=1

F−1
j1 z−j−k+1

(
k + j − 2

k − 1

)
rk−1 Pk−1


 . (11b)

The kinetic energy, T , of the fluid in the halfspace comtaining bubble A and bounded by the
wall is given by

T = − 1
2 ρl

∫ ∫
A

φ (vc · n + Ṙ) dS, (12)

where n is the outward normal to the bubble, n =
3∑

i=1

niei .

Dimensionless added-mass tensors are defined by:

αi j
def= − 1

Vb

∫ ∫
�j ni dS, (13a)
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βi j
def= − 1

Vb

∫ ∫
χ ni nj dS, (13b)

ψi
def= − 1

Vb

∫ ∫
(�i + ni χ) dS, (13c)

where Vb denotes the volume of the bubble. Equations (10), (12), and (13) combine to give

2T

ρl
= Vb α3 3 U

2 + Vb Ṙ
2 tr(β) − Vb Ṙ U ψ3, (14)

where tr(β) is the trace of β . The integrations in Equation (13a) are straightforward. With the
aid of Equations (9) and (15):

F−1
11 = −1 and F−1

12 = 0, (15)

these integrations yield

α3 3 = − 1 − 3
2 F

−1
22 = −1 − 3

2 G
−1
22 , (16a)

tr(β) = 3 − 3R
∞∑
k=1

F−1
k 1 z

−k = 3 − 3
∞∑
k=1

G−1
k 1

(
R

z

)k

, (16b)

ψ3 = −6R−1 F−1
21 = −6G−1

21 , (16c)

where the coefficients G−1
ij are defined in Appendix 9, and show that the added-mass coeffi-

cients are functions of the ratio (R/z) only. Expressions (16) for the added-mass coefficients
of a radially expanding sphere near a plane wall are new. Results obtained using these will be
compared in Section 4 with results of the literature.

3. The acceleration of the bubble center

The instantaneous velocity of the center of the bubble, vc, is given by U e3. In order to be
able to predict bubble motion starting from a given initial distance from the wall, z/2, radius,
R, growth rate, Ṙ, and velocity, U , the acceleration U̇ has to be determined. The Lagrange–
Thomson approach is applied.

Let z/2 be the first generalized coordinate, q1, and let q2
def= R. The corresponding gen-

eralized velocities (U, Ṙ) are assumed to be known at a given instant of time. Let Qj be the
generalized forces exerted on the fluid, and let conservative forces be part of the Qj . The two

coordinates {qi} satisfy the requirements that all working agents are included in
2∑

i=1

Qi q̇i , and

that Q1 q̇1 is independent of Q2 q̇2. The generalized forces are given by

Qj = d

dt

∂T

∂q̇j
− ∂T

∂qj
. (17)
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Without loss of generality, conservative forces (gravity) are left out of the analysis to sim-
plify the writing. Taking the pressure at infinity homogeneous and constant in time, the hy-
drodynamic force on the bubble in e3-direction, F3, is given by −Q1. Since the liquid is
incompressible, Equation (17) divided by ρl yields

F3

ρl
= − d

dt

∂(T /ρl)

∂U
+ 2

∂(T /ρl)

∂z
(18)

with T /ρl given by Equations (14) and (16a). The first term on the right-hand side of Equation
(18) is the acceleration reaction, and is equal to

d

dt

[
UVb + 3

2 Vb U F−1
22 − 4 πR2 F−1

21 Ṙ
]

(19)

The second term on the right-hand side of Equation (18) is the steady motion acceleration,
and is given by

U 2 Vb

∂α33

∂z
+ Ṙ2 Vb

∂tr(β)

∂z
− Ṙ U Vb

∂ψ3

∂z
. (20)

To compute ∂α33/∂z, Equation (8) is used, yielding:

∂F−1
22

∂z
=

∞∑
i,j=1

−F−1
2i

∂Fi j

∂z
F−1
j2 =

∞∑
i,j=1

1
2 R

3 z−i−j (i + j − 1)!
(i − 1)! (j − 1)! F

−1
j2 F−1

i2 . (21)

In a similar fashion, the steady-motion acceleration can be shown to be the sum of (22), (23)
and (24):

−
∞∑

i,j=1

U 2 R6 π
(i + j − 1)!

(i − 1)! (j − 1)! z
−i−j F−1

i2 F−1
j2 , (22)

−
∞∑

k,n=1

Ṙ U 4 πR5 (k + n − 1)!
(k − 1)! (n − 1)! z

−k−n F−1
k1 F−1

n1 , (23)

−
∞∑

i,j=1

Ṙ2 4 πR4 (i + j − 1)!
(i − 1)! (j − 1)! z

−i−j F−1
i1 F−1

j1 , (24)

respectively corresponding to the U 2-term, the Ṙ U -term and the Ṙ2-term, Ṙ2 Vb ∂tr(β)/∂z,
of Equation (20). Since the total force is given by

−F3

ρl
= α33 U̇ Vb − 1

2 ψ3 R̈Vb + U Ṙ

{
Vb

∂α33

∂R
+ 4 πR2 α33

}
+

+ U 2 Vb

∂α33

∂z
− 1

2 Ṙ
2

{
Vb

∂ψ3

∂R
+ 2 Vb

∂tr(β)

∂z
+ 4 πR2 ψ3

}
(25)

and since

Vb

∂ψ3

∂R
+ 4 πR2 ψ3 = −24 πR2 ∂F

−1
21

∂R
, (26)
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an algebraic expression for F3, in terms of known parameters and U̇ and R̈, is obtained once
Equation (21) is substituted, as well as algebraic expressions for the derivatives ∂F−1

21 /∂R and
∂α33/∂R. These expressions are derived using Equation (8), which yields:

∂F−1
21

∂R
= −

∞∑
i,j=1

1
2 R

2 (2i − 1) z−i−j+1

(
i + j − 2

i − 1

)
F−1
i2 F−1

j1 , (27)

∂F−1
22

∂R
= −

∞∑
i,j=1

1
2 R

2 (2i − 1) z−i−j+1

(
i + j − 2

i − 1

)
F−1
i2 F−1

j2 . (28)

Evaluation of the velocity potential and the hydrodynamic force F3 is a simple task using the
program MatlabTM, the definition of F given by Equation (5), Equation (25) and the algebraic
expressions (21)–(24) and (26)–(28).

For use in Section 5 the following derivative is given:

1

3

∂tr(β)

∂R
=

∞∑
j=1

z−j F−1
j1 +

∞∑
i,j=1

F−1
i1 (2i − 1) z−i−j+1

(
i + j − 2

i − 1

)
F−1
j1 . (29)

In order to compare the present results with the results of previous authors, the expressions
derived earlier in this section will now be simplified for an asymptotic case.

With the aid of Equations (5) and (6) it can be shown that

a2 = 1
2 R

3 h1 (U − R2 Ṙ z−2) + 1
2 R

3 h1 z
−2

∞∑
j=3

j aj z
1−j (30)

with

h1
def= 1

1 − (R/z)3
. (31)

Far from the wall, for values of z/R to be specified below, the higher order multipole con-
tributions are negligible compared to a1 and a2. A comparison of Eq (30) with (7) shows
that

if a3 = a4 = . . . = 0 then F−1
22 ∼ −h1 and F−1

21 ∼ − 1
2 h1 R y2, (32)

where y, as defined by

y
def= R/z (33)

is 1
2 at maximum. The approximation may be summarised as follows:

−F3

ρl
≈ Ṙ2 R2 y2 π (4 − 10h1) + Ṙ U R2 π (6h1 − 4) + U̇ R3 π

(
2h1 − 4

3

)+
+ R̈ (−2 πh1 R

3 y2) − 6 πR2 h2
1 U

2 y4. (34)

Equations (32) and (16a) show that the added mass α33 is 1
2 at large distances from the wall.

Also, the results of Thomson and Tait [14, Section 137] are easily recovered in this way. In
the approximation of Equation (32), the added-mass coefficients are given by:

α3 3 ∼ 3
2 h1 − 1, tr(β) ∼ 3 + 3 y + 3

2 h1 y
4, ψ3 ∼ 3 y2. (35a)
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Figure 2. Ratios of added-mass coefficients to approximated values, given by Equations (35a) and (64), in the
vicinity of the wall.

Figure 2 shows that Equation (35a) are accurate to within 1% for ( 1
2z/R) >1·4.

Voinov [22] derived an exact expression of T for two touching solid spheres, i.e., for y = 1
2 :

T (y = 1
2 , Ṙ = 0) = 1

4 ρl Vb (3 · ζ(3) − 2) U 2, (36)

where ζ is the Riemann ζ-function; ζ(3) ∼ 1·202060. Solving Equation (16a) in this case re-
quires at least 80 coefficients for z/(2R) = 1·01; linear extrapolation of the ratio α3 3/(

3
2 h1 −

1), see Figure 2, gives α33 ≈ 0·8, which equals 1
2(3×1·2−2) and is therefore practically

identical to 1
2(3ζ(3) − 2).

Witze et al. [23] used bipolar coordinates to solve the problem of an isotropically expanding
sphere that remains attached to the wall. In this case, U = Ṙ, and taking R = ε t1/2 they
computed

T (y = 1
2 , U = Ṙ) ≈ 9·33 ρl Ṙ

2 R3, (37a)

F3(y = 1
2 , U = Ṙ) ≈ −0·29 π ε4 ρl . (37b)

The coefficients 9·33 and 0·29 of Equation (37) are in good agreement with those computed
with Equations (14) and (25): 9·35 and 0·28 respectively. Since the convergence of the series
involved is slowest for y = 1

2 , and since the predictions appear to be good for the two extremes
y = 1

2 and for y � 1, the results are expected to be correct for each y-value in (0, 1
2 ).

Miloh et al. [24] considered several related cases, including a stationary expanding sphere
near a plane wall and a rigid sphere moving near a plane wall, by using the Lagally theorem.
Miloh accounted for the dipole terms related to translational motion of the center, but those
related to the expansion (D̃1 in his terminology) appear to be missing. Since D̃1 does not
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occur in the acceleration reaction in his Equation (15a), his Equation (80) for the force on a
stationary sphere near a wall seems to be missing a term proportional to the acceleration R̈.

4. Comparison with the Lagally theorem

In Section 3, the Lagrangian approach was applied to an expanding bubble, thereby extend-
ing Lamb’s work to deformable systems. To validate our results, we compare them to those
obtained by direct methods where the pressure is evaluated using Bernoulli’s equation. A
convenient way to do this is to apply the Lagally theorem derived by M. Lagally, G.I. Taylor
and others originally in the 1920’s. In the 1950’s and 1980’s, Landweber et al. [25] and
Landweber et al. [26] extended the theorem, to include deformation. Van Wijngaarden [27]
and Biesheuvel [28] simplified the derivation of the generalized Lagally theorem.

According to the Lagally theorem, the hydrodynamic force on the bubble, F, is given by

1

ρl
F = d

dt


 d

dt
(xc Vb) − 4 π

∑
monopoles

po Do
∣∣
s
(x) − 4 π

∑
dipoles

p1 D
1
∣∣
s
(x)


+

−4 π
∑

singularities

ps
q D

q
∣∣
s

v′. (38)

The following definitions are used in Equation (38):

s
def= number of the singularity, situated at xs ,

v′(x) def= the velocity induced at x minus the velocity,

induced at x by multipoles situated at x ,

D0 def= I ,

po
def= negative of the strength of the monopole.

If φd = −ms

r
with r

def= |x − xs|, po D
0|s(x) = ms xs ,

pi
1

def= strength of dipole-component i.

p1 D
1|s(x) def=

∑
i

pi
1

∂

∂xi

∣∣∣∣
s

x =
∑
i

pi
1 ei = p1.

If φ = 
µ · ∇ 1

r
= − r−3 
µ · r, then p1 D

1|s(x) = 
µ ,

p
ij

2
def= strength of quadropole-moment (i, j) ,

p2 D
2|s(v) def=

∑
i

∑
j

p
ij

2

∂

∂xi

∂

∂xj

∣∣∣∣
s

(v) .

If φ = −(−1)qpq D
q 1

r
, then

pqD
q |s(v) =

∑
i

∑
j

∑
k

pijk...
q

∂

∂xi

∂

∂xj

∂

∂xk
. . .

∣∣∣∣
s

(v) ,
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Figure 3. Definition of moving (primed) and laboratory reference systems

Vb
def= the volume of the object (bubble),

vc
def= the velocity of the center of the object, situated at xc ,

ρl
def= the mass density of the fluid.

However, Landweber and Miloh [26] and Biesheuvel [28] derived two expressions for the
force on an expanding bubble. In their other expression, the acceleration reaction, the first
term on the RHS of Equation (38), was written as

d

dt


vc Vb − 4 π

∑
singularities

ps
q D

q
∣∣
s
(x) + d

dt
(xc Vb)


 . (39)

It will now be shown that expression (39) is wrong, and that the differences with the proper
expression for F are only apparent if expansion or contraction takes place. It will be be shown
that the deformation monopoles do not contribute to the acceleration reaction. Finally, it will
be shown that the force predicted in Section 3 is identical to the force predicted by the Lagally
theorem.

First, an alternative expression for F is derived, starting from Equation (38). Let ei be a unit
vector in a Cartesian laboratory frame and e′

i a unit vector in a Cartesian body-fixed coordinate
system, see Figure 3. By definition, x′ = x − xc, where xc is the body’s centroid, defined
by

xc = 1

Vb

∫ ∫ ∫
x dV. (40)

The velocity of a point at the surface of the deformable body, u, can be decomposed as

u = vc + vd, (41)

where vc = dxc/ dt is the velocity of the body’s centroid. It is shown in Appendix 9 that

d

dt
(xc,i Vb) =

∫ ∫
xi vd · n dS + vc ·

∫ ∫
xi n dS. (42)

Here n is the outward normal to the surface. Equation (42) disagrees with expression (48)
given by Landweber et al. [26, pg. 39]. In Appendix 9 it is shown that∫ ∫

x′
i vd · n dS = 0, (43)
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which is equivalent to Equation (5) of Saffman [29]. Equation (43) is now used to prove

vc Vb − 4 π

d/∑
singularities

ps
q D

q(x)s +
∫ ∫

φd n dS =

= d

dt
(xc Vb) − 4 π

∑
singularities

ps
q D

q(x)s. (44)

The d/ superscript implies that the summation does not extend to the multipoles that are related
to the deformation potential, φd , and the suffix d denotes deformation.

If the velocity potential φ is expanded as

φ = · · · − m

r
+ 
µ · ∇1

r
+

3∑
i,j=1

p
ij

2

∂

∂xi

∂

∂xj

1

r
+ · · · ,

then the monopole strength, m, and the dipole strength, 
µ, can be expressed as integrals over
φ and n · ∇φ ([30, p. 121]). Equation (43) then yields∫ ∫

φd n dS = − 4 π 
µd , (45)

∫ ∫
x vd · n dS = 4 πmd xc. (46)

Here md and µd are the monopole and dipole strengths in the expansion of φd , respectively.
Equations (46) and (42) give

vc Vb = d

dt
(xc Vb) − 4 πmd xc. (47)

Equations (45) and (47) prove Equation (44).
With the aid of Equation (44) it can be sown that the force F on an expanding bubble is

alternatively given by

1

ρl
F = d

dt


vc Vb − 4 π

d/∑
monopoles

po Do
∣∣
s
(x) − 4 π

d/∑
dipoles

p1 D
1|s(x) +

∫ ∫
φd n dS


 +

− 4 π
∑

singularities

ps
q D

q
∣∣
s

v′ (48)

and that the term vc Vb should be omitted from Equation (39). If this term were retained, F/ρl
would contain d (2vc Vb) / dt , which would yield a U̇ -term twice as big as it should be.

Equations (48)and (45) show that only the dipole of the deformation potential contributes
to the acceleration reaction. The monopole contribution corresponding to φd in Equation (44)
is balanced by xc dVb/ dt .

It will now be shown that the Lagally theorem yields the same force on the bubble as that
obtained by the Lagrangian approach.

Using the proper expression for the Lagally theorem, it can be shown that F3 is given by

F3

ρl
= d

dt
[U Vb − 4 π a2] − 4 π

∞∑
n=1

n an

∞∑
k=1

ak

(
k + n− 1

n − 1

)
z−n−k. (49)
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The ai-coefficients are now expressed in Fij -elements with the aid of (7). This yields for the
acceleration due to steady motion the sum of (22), (23), and (24). Equation (7) shows that
the acceleration reaction is given by (19). The force computed with the Lagally theorem (38)
is therefore the same as that predicted by the Lagrangian approach. In Section 5, the latter
approach will be seen to additionally yield an extended Rayleigh equation.

5. A generalized Rayleigh equation

One particular advantage of the Lagrange-Thomson approach is that the governing equation
for R̈ comes out naturally from the Lagrangian equation corresponding to the radius R. This
extended Rayleigh–Plesset equation will now be derived.

The generalized force on the bubble, FR, corresponding to isotropic expansion is derived
using the kinetic energy given by Equation (14), the added-mass coefficients given by (16a),
and the derivatives given by (21), (24), and (26)–(29). The result is

FR

ρl
= R̈ 4 πR3

{
−1 +

∞∑
k=1

R z−k F−1
k1

}
− U̇ 4 πR2 F−1

21 + 2 πR2 Ṙ2

{
− 3 +

+3R
∞∑
m=1

z−m F−1
m1 −

∞∑
i,j=1

R z1−i−j (2i − 1)

(
i + j − 2

i − 1

)
F−1
i1 F−1

j1

}
+

+
∞∑

l,m=1

8 πR3 U Ṙ R z−l−m

(
l + m − 2

l − 1

)
(l + m − 1) F−1

l1 F−1
m1 +

−
∞∑

i,j=1

U 2 4 πR5 z−i−j

(
i + j − 2

i − 1

)
(i + j − 1) F−1

j1 F−1
i2 +

−U 2 πR2

{
2 + 3F−1

22 −
∞∑

i,j=1

1
2 R

3 z−i−j+1 (2i − 1)

(
i + j − 2

i − 1

)
F−1
i2 F−1

j2

}
. (50)

The approximation (32) yields

FR

2 πR2 ρl
≈ −R̈ R (2 + 2 y + y4 h1) − Ṙ2

(
3 + 4 y + 7

2 y
4 h1 + 3

2 y
7 h2

1

)+
+ U̇ R y2 h1 + U Ṙ (4 y2 + 8 y5 h1 + 6 y8 h2

1) +
+ U 2

(
3
2 h1 − 1 + 3

2 y
3 h2

1 − 4 y3 h1 − 6 y6 h2
1

)
. (51)

Zijl [6, Chapter 18, p. 568] truncated an expansion of the velocity potential after y2, applied
the Bernoulli equation and direct integration of the pressure. By comparing terms proportional
to cos(θ) he was able to derive the terms −R̈ R (2 + 2 y) − Ṙ2 (3 + 4 y). Equation (51) will
now be used to derive an extended version of what is known as the Rayleigh-Plesset equation,
that dates from 1917 (Rayleigh) and 1949 (Plesset) and applies to a bubble in an unbounded
fluid. This equation is usually derived by integration of the Navier-Stokes equations, see for
example Brennen [5]. The approach followed here is, in the view of the author, more elegant
and applies to a bubble in the vicinity of a plane, infinite wall. Since viscous dissipation is
intrinsic in Navier-Stokes flow, it has to be accounted for. This is done with the aid of the
Levich approach that is more fully discussed in Section 7.
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The derivation starts with identifying the generalized forces involved, by computing the
power provided at the bubble boundary. Consider a system of two identical spherical bubbles
surrounded by liquid. The time rate of change of kinetic energy of the liquid, TA+B , in the
volume outside the two bubbles is given by

dTA+B

dt
=

N∑
j=1

Qjq̇j (52)

Integration of the mechanical energy equation [31, Section 3.3], and application of the Leibniz
theorem (see Appendix 9) yields for an incompressible liquid

dTA+B

dt
=
∫ ∫

pl n · v dS − �̇ +
∫ ∫ ∫

ρ v · 
g dV+
∫ ∫

n · 

τ · v dS, (53)

where �̇ is the total energy dissipation rate in the liquid volume outside the two bubbles, pl

is the pressure in the liquid, n is the normal pointing into the liquid, 
g is the gravity vector,
and the last term represents viscous traction at the boundaries of the bubble and at infinity. If
the velocity field at infinity is homogeneous, the traction term is only nonzero at the bubble
surface, where it can be written as

−Ṙ 2 µl

∫ ∫
A

∂vl,r

∂r
dS

with vl,r the normal liquid velocity component and µl the dynamic viscosity of the liquid.
Without loss of generality, gravity is left out of the analysis to simplify the writing. Taking the
pressure at infinity constant and equal to pl,∞, Equations (52) and (53) yield after dividing by
two, using symmetry:

Ṙ

∫ ∫
A

(
pl − pl,∞ − 2 µl

∂

∂r
vl,r

)
dS = −FR Ṙ − F3 U + �̇halfspace. (54)

The power provided at the bubble boundary, Ṙ
∫∫ (

pl − 2 µl
∂
∂r
vl,r
)

dS, is used to expel
liquid at infinity, Ṙ

∫∫
pl,∞ dS, to convert, irreversibly, kinetic energy into internal energy in

the space bounded by a single sphere and an infinite plane wall, �̇halfspace, to move the center
of mass, −F3 U , and to expand, −FR Ṙ. If the pressure inside the bubble is homogeneous and
equal to pb, and if viscosity effects are negligible in the bubble, the time rate of change of the
kinetic energy of the bubble is zero. There is a reversible conversion of internal energy of the
bubble into work at the boundary, since

−
∫ ∫ ∫

Vb

pb(∇ · v) dV =
∫ ∫

A

pb v · n dS = pb

dVb

dt
. (55)

A similar conversion takes place in the fluid-gas interface if the area of the interface, Ab,
changes, requiring the work σ dAb/ dt where σ denotes the surface-tension coefficient. The
power provided at the boundary to the liquid is therefore

Ṙ

∫ ∫ (
pl − 2 µl

∂

∂r
vl,r

)
dS = pb

dVb

dt
− σ

dAb

dt
. (56)
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Figure 4. Definition of the two flow cases II and III in the laboratory frame.

A drag force ∂W/∂Ṙ is connected to �̇halfspace, as will be shown in Section 7. The Ṙ-
component of the power is independent of the U -component, by definition of generalized
coordinates, and Equations (54) and (56) therefore yield

FR

4 πR2
= −pb + pl,∞ + 2 σ

R
+ 1

4πR2

∂W

∂Ṙ
. (57)

Equations (57) and (50) yield the extended Rayleigh equation as a lengthy expression con-
taining R̈ and U̇ . Employing the approximation (32), the leading terms in R̈, U , and Ṙ2 yield,
see (51):

−R̈ R (1 + y) − Ṙ2 ( 3
2 + 2 y

) + 1
2 U̇ R y2 h1 + · · · = − pb

ρl
+ pl,∞

ρl
+ 2 σ

R ρl

+ 1

4πR2

∂W

∂Ṙ
(58)

The dots on the LHS of (58) indicate terms that have been omitted for clarity and brevity. When
U = U̇ = y = 0, the single-bubble case, the term (4πR2)−1∂W/∂Ṙ in Section 7 will be seen

to give 4νl Ṙ/R, where νl
def= µl/ρl is the kinematic viscosity. In this case (58) therefore gives

the well-known Rayleigh-Plesset equation.

6. General motion

In the present section, motion of the bubble centroid in an arbitrary direction is considered.
The frame of reference is the laboratory frame in which the wall is at rest in order not to invoke
‘fictitious’ forces.

Let the flow situation depicted in Figure 1 be named case I . With respect to the laboratory
frame, arbitrary irrotational flow can be decomposed in the three cases I , II , and III of
Figures 1 and 4. For r < z, the velocity potentials3 corresponding to these flow cases are

3The time-dependent velocity potential coefficients {ẽn, k̃n}n can be transformed into coefficients {en, kn}n using
E, as discussed in Appendix A.
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given by:

φII = −G2 r cos(χ) P 1
1 +

∞∑
n=1

[ ( r
R

)−n−1
ẽn

+
∞∑
q=1

ẽq

(
q + n

n + 1

) (
r

z

)n (
R

z

)q+1 ]
cos(χ) P 1

n , (59a)

φIII = −
∞∑
n=1

k̃n cos(χ)



( r
R

)−n−1
P 1
n +

∞∑
q=1

(
n+ q

q + 1

) (
r

z

)q (
R

z

)n+1

P 1
q


 . (59b)

Here (r, θ, χ) is a spherical coordinate system centered at bubble A; see Figure 1. Note that
P 1
o = 0. Each velocity potential can be derived by using symmetry properties of the flow

situation, while converting the coordinate system (r, θ, χ) to a (r ′, θ′, χ′)-system centered at
bubble B. The boundary conditions are indicated in Figure 4, and read

∂φII

∂r

∣∣∣∣
r=R,A

= 0,
∂φII

∂r ′

∣∣∣∣
r ′=R,B

= 0

∂φIII

∂r

∣∣∣∣
r=R,A

= w2 cos(χ) sin(θ),
∂φIII

∂r ′

∣∣∣∣
r ′=R,B

= w2 cos(χ′) sin(θ′).

Since in each flow case the same set of expansion coefficients holds for both bubbles, the
following expressions (60), derived from Equation (59) and the boundary conditions, apply to
both bubbles:

∞∑
m=1

{
−δnm +

(
m + n

n + 1

)
n

n + 1

(
R

z

)n+m+1
}
ẽm = G2

1
2 R δn1, (60a)

∞∑
m=1

{
−δnm +

(
m + n

n + 1

)
n

n + 1

(
R

z

)n+m+1
}
k̃m = w2

1
2 R δn1. (60b)

If the term in brackets on the LHS of Equation (60b) is named GIII
nm , the coefficients {k̃m}m

follow from

k̃j = ([GIII ]−1)j1
1
2 Rw2, (61)

while for case II the same operator GIII can be used:

ẽj = ([GIII ]−1)j1
1
2 RG2. (62)

Case II was also studied by, for example, Miloh et al. [24] and Kok [17]. Case III is
a straightforward extension. The special features introduced in the present paper are the
deformation case I and the function G−1 to generate velocity expansion coefficients.

The velocity field around an isotropically expanding bubble in the vicinity of a plane,
infinite wall is described by the potentials of the cases I , II , and III . Its motion can be
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predicted using the Lagrangian approach. To this end, the kinetic-energy equation (63) is
determined:

2T

ρl
= Vb α3 3 U

2 + Vb Ṙ
2 tr(β) − VṘ U ψ3 + Vb α22 (w2 − G2)

2 . (63)

The added-mass coefficient α22 is computed in a way discussed in Section 2. It is given by

α22 = −1 − 3
2 ([GIII ]−1)11. (64)

In the approximation of Equation (32), α22 ≈ −1 + 3
2

(
1 − 1

2y
3
)−1

, see Figure 2.

Since
∂α22 Vb

∂U
= 0, the force on the center of mass in the direction x′

3 is given by Equa-

tion (25) if

(w2 − G2)
2 Vb

∂α22

∂z
(65)

is added to the RHS of (25) in order to account for both w2 and G2. The forces being known,
the acceleration of the bubble, and its trajectory, can be predicted. Sample computations will
be given in Section 8.

7. The drag on an expanding bubble

7.1. VISCOUS DISSIPATION IN POTENTIAL FLOW

It is well known that the drag coefficient of a sphere in an unbounded fluid is given by 24/Re in
creeping flow, 48/Re in potential flow and some value in-between if the free-surface boundary
layer is taken into account. Here Re = 2R Urel/νl , Urel being the undisturbed velocity of the
liquid relative to the bubble and νl the kinematic viscosity of the liquid. The potential-flow
approximation, applicable when Re � 1, yields velocity gradients from which the rate of
viscous dissipation of energy can be computed. This was first applied by Levich [30, p. 368].
The dissipation in the liquid outside an isotropically expanding sphere in the vicinity of a
plane, infinite wall is now computed following the same approach. In Subsection 7.2, the
result will be used to derive expressions for the drag in the Lagrangian formalism.

For a sphere, the energy dissipation rate, �̇, can be computed with

�̇ = −µl

∫ ∫
2 v · ∂

∂r

∣∣∣∣
r=R

v dS. (66)

Straightforward, but tedious, calculations yield for the dissipation rate in the halfplane outside
a bubble near a plane wall

�̇ = 8 πµl R
−1

∞∑
n=1

1

n
(2n + 1) (n + 1) ã2

n+1 + 16 πµl R Ṙ2 +

+4 πµl R
−1

∞∑
n=1

(2n + 1) (n + 1)2 (k̃n − ẽn)
2. (67)
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In this computation of �̇, use has been made of Equation (68) which has not been found in
the literature:

∫ 1

−1
dx (1 − x2)

dP 1
q

dx

dP 1
n

dx
=


q (q + 1) (2 q2 − 1)/(2 q + 1) if n = q

− 1
2 {1 + (−1)n−q} (q + 1) q if q ≤ n− 2

. (68)

Kok [16, Chapter 3] performed a similar computation for the case of two rigid spheres, and
derived Equation (67) without the R Ṙ2-term and with a different meaning of the coefficients
{ãn}. Equation (67) is used in Section 7.2 to compute the drag on the bubble.

7.2. DRAG IN THE LAGRANGIAN FORMALISM

Moore [32] took the free-surface boundary layer into account, and showed that the dissipation
of a freely rising bubble yields a drag coefficient that is given by

cD = 48

Re
− 106

Re3/2 . (69)

This shows that the drag of non-deforming spheres can be overestimated to within an accuracy
of Re−3/2 by considering potential flow only. In the case of a fast growing bubble the free-
surface boundary layer may not be well-developed, and the potential-flow approximation is
even more accurate. It will now be seen how the Lagrangian formalism can account for a
(Re → cD)–relationship like that of Equation (69).

Suppose that a function W exists such that

�̇ =
N∑
j=1

q̇j
∂W

∂q̇j
; (70)

then each
(− ∂W/∂q̇i

)
represents a drag force on the fluid. This drag force will be denoted

by QW ,i. Two important examples of W are now considered. Suppose that � is given by
�̇ = Wij q̇i q̇j for q̇i-independent functions Wij . Then W = 1

2 �̇ and W is called Rayleigh’s
dissipation function. If, alternatively, � is given by

�̇ = W1 q̇
2
1 − W2 q̇

3/2
1 ,

then

W = 1
2 W1 q̇

2
1 − 2

3
W2 q̇

3/2
1

and QW ,1 = −W1 q̇1 + W2 q̇
1/2
1 represents the drag force with cD given by Equation (69).

This shows that the dissipation function W offers a generalisation of Rayleigh’s dissipation
function that may accommodate the boundary-layer dissipation at free-surfaces to an accuracy
of Re−3/2. Higher accuracies are obtained, naturally, by considering W = ∑N

j=1 fj q̇
nj with

exponents nj and coefficients fj fitted to more accurate expressions of �̇.
The hydrodynamic forces computed in the previous sections and the drag force QW ,i

jointly determine the bubble trajectory. Consider, as an example, the case that Ṙ(t) is pre-
scribed for a spherically growing or collapsing bubble in motion perpendicular to the wall.
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Figure 5. Ratios of drag force coefficients to approximations in the vicinity of the wall.

Since the Ṙ-history is prescribed, the extended Rayleigh equation does not have to be solved.
With the aid of Equation (67), Rayleigh’s dissipation function is found to be given by

W11 = 2 πµR

∞∑
n=1

1

n
(2n + 1) (n + 1) (G−1

(n+1) 2)
2, (71a)

W12 = W21 = −8 πµR

∞∑
n=1

1

n
(2n + 1) (n + 1)G−1

(n+1) 1 G
−1
(n+1) 2. (71b)

The component of the friction force in direction e3 on the bubble is given by ∂
(

1
2�̇
)
/∂U .

This expression yields the following balance of hydrodynamic and drag forces in direction
e3:

α33 U̇ Vb − 1
2 ψ3 R̈Vb + U Ṙ

{
Vb

∂α33

∂R
+ 4 πR2 α33

}
+ U 2 Vb

∂α33

∂z
+ 1

2 Ṙ
2

{
Vb

∂ψ3

∂R

+ 2 Vb

∂tr(β)

∂z
+ 4 πR2 ψ3

}
= (−W11 U − W12 Ṙ

)
/ρl . (72a)

The displacement of the centroid follows from

ż = 2U. (72b)

Equation (72) can be integrated numerically in time to solve for U and z. In this way the
trajectory of the bubble can be determined for any set of initial values of z, R, U , and for
any given history of the radius, Ṙ(t). If only the initial value of Ṙ is specified, (72) has to be
solved jointly with the extended Rayleigh equation.

In many cases, the predictions can be improved by incorporating a term −W̃11 U
1/2, as

explained above. At large distances from the wall, i.e., if y � 1, W̃11/W11 ∼ 106/48,
see(69).
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Figure 6. History of velocity U for a bubble with an oscillating radius, starting from rest (U = 0). The
corresponding imposed radius history is indicated as a dotted line.

In the approximation of Equation (32), Equation (71) yields

W11 ∼ 12 πµR h2
1 and W12 ∼ −24 πµh2

1 R (R/z)2 = −2W11 (R/z)
2. (73)

An expanding bubble therefore experiences less drag then an imploding bubble in motion
away from the wall (U > 0). Figure 5 shows that the W11 given by Equation (73) is accurate
to ±5% if ( 1

2z/R) >1·2. For h1 ∼ 1, i.e., for a sphere in an unbounded fluid, Equation (73)
yields the well-known drag coefficient cD = 48/Re.

8. Sample trajectory computations

Interest in the hydrodynamic interaction of two oscillating bubbles has a long history that
goes back to Bjerknes; see Section 1. The first example of the present section deals with the
nonlinear interaction of two oscillating bubbles, one being the mirror bubble B of Figure 1.

If the hydrodynamic forces do not affect the shapes of the bubbles, the two governing
equations to be solved are given by (72). Using (71) and the right-hand side of (49), this has
been done for the initial conditions U(t = 0) = 0 mm/s, R(t = 0) = Rt=0 = 1 mm, initial
distance of the two centres 2·24Rt=0 and for a prescribed shape history corresponding to an
oscillating bubble:

R = Rt=0 + 0·1Rt=0 sin(2000 π t).

The period of oscillation, T , has been chosen small as compared to the characteristic time
corresponding to the drag force, R2

t=0 ρl/(18 µl), with ρl = 1000 kg/m3, µl = 10−3 m2/s. The
corresponding frequency is that of the periodic part of a solution of the Rayleigh equation [5,
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Figure 7. Trajectory of a bubble with an oscillating radius in the vicinity of a plane, infinite wall. See Figure 6.

p. 101]:

2 π

T
=
{

3pl,∞ γ

ρl R
2
t=0

+ 2 σ(3 γ − 1)

ρl R
3
t=0

}−0.5

,

if the pressure at infinity, pl,∞, is suitably chosen. Here γ
def= cp/cv . The change in velocity

during the first 1 1
2 period of oscillation is shown in Figure 6, the corresponding trajectory in

Figure 7 and the force history in Figure 8. the bubble propels itself away from the wall4 . This
self-propulsion of a homogeneous sphere is induced by the mirror sphere (or the wall), since
Saffman [29] showed that in the absence of a wall a homogeneous body requires asymmetrical
deformations in order to experience a persistent motion of its centroid. The computed force
has a sign opposite to what would be expected on the basis of the linear theory for the Bjerknes
forces [10], which is due to nonlinearity and the fact that the oscillation is not free to satisfy
the extended Rayleigh equation (50) exactly.

Another important example is that of a boiling bubble at the verge of detachment from
a vertical plane wall when gravity plays an insignificant role [2]. Expressions for the forces
acting on the bubble are often modified to predict the detachment radius [33]. In many cases,
depending on pressure and heat flux, the shape just before detachment is close to spherical, the
growth rate is controlled by diffusion and proportional to t1/2, and the bubble foot negligibly
small [34]. With forced convection, the velocity G2 of the liquid at infinity depends on the
distance of the bubble center from the wall, z/2. These ingredients are used in the following

4Submarines might use this principle to leave dock without making a sound, e.g., by inflating a large part of a
flexible belly at high frequency. Surface waves might probably not be avoided, however.
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Figure 8. Histories of forces on bubble in the vicinity of a plane wall. The dotted line is the drag force and the
solid line the hydrodynamic minus the terms proportional to R̈ and U̇ .

example:

Rt=0 = 0·2 mm and Ut=0 = 1·32 mm/s and zt=0 = 4·4Rt=0,

to = 0·005R2
t=0 s and R = 1√

0·005

√
t + to mm,

G2 = −50 z mm/s and w2 = 0.

The remaining parameters are the same as in the previous example. Expression (65) is added
to the LHS of (72a). The results (Figures 9 and 10) show that the force corresponding to G2

2
presses the bubble to the wall and is quite significant. Figure 10 shows that the hydrodynamic
lift [35]

Flift, x ′
3

= −2Vb ρl cL
∂G2

∂z
(w2 − G2) = −Vb ρl 1002 z cL/2 (74)

is smaller than the counteracting hydrodynamic force corresponding to G2
2 by about a factor

four. The lift force pushes the bubble away from the wall. The lift-force coefficient, cL, is taken
to be 0·5 despite the fact that it is known to depend on the added-mass coefficients and on Re
[36]. A detailed discussion of the lift force is beyond the scope of the present investigation,
and the lift force has therefore not been included in the equation of motion of the bubble
centroid.

9. Conclusions

Equations for the acceleration and spherical deformation of a bubble in a potential flow in
the vicinity of a plane infinite wall have been derived. A solution method for the velocity
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Figure 9. Trajectory and shape history of a bubble growing in the vicinity of a plane wall. The shape is prescribed
and not shown at each instant of time.

potential, φ, has been introduced that is based on an operator on l2(φ). This solution method
can also be applied to arbitrary deformation of the bubble.

The Lagrange–Thomson approach to compute hydrodynamic forces has been applied. The
acceleration of the bubble center was shown to be equal to the acceleration predicted with the
Lagally theorem. It is shown that deformation monopoles do not contribute to the d/ dt-term
of the Lagally theorem, the so-called acceleration reaction. Some mistakes made by previous
authors were discovered and have been rectified. The Levich approach has been applied to
take viscous dissipation into account. The Rayleigh dissipation function has been extended to
account for the free-surface boundary layer. The drag force on an expanding spherical bubble
in arbitrary motion in the vicinity of a plane wall has been computed. It depends on U , Ṙ and
the distance to the wall. Asymptotic solutions of hydrodynamic and drag forces are in good
agreement with results of the literature.

An extended Rayleigh–Plesset equation has been derived that describes deformation in the
vicinity of a plane wall. Asymptotic solutions are in agreement with previous results.

Two sample shape histories and trajectories were computed with truncations for which it
is possible to estimate the residual error. These examples correspond to practical engineering
problems in which capillary forces dominate inertial forces.

Future studies will be devoted to the application of the results of the present study to
the derivation of criteria for bubble detachment [33] and to the modeling of an arbitrarily
deforming bubble near a solid wall [37].
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Figure 10. Force histories corresponding to Figure 9, see caption Figure 9.
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Appendix A. Convergence and the operator G

It can be shown that
∞∑

i,j=1

∣∣αi j

∣∣2 =
∞∑
i=1

bi
def=

def=
∞∑
i=1

(
i − 1

i

)2

R4 i−2 z−2i
(
1 − z−2

)−2i+1
i−1∑
j=1

(
i − 1

j

)2

z−2j ,

which converges if z > 1 and if limi→∞ bi+1/bi = R4 z−2
(
1 − z−2

)2 ( z+1
z

)2
< 1. This is

satisfied if

z > 1 and R <
√
z − 1. (A1)

From Equation (A1) the condition R/z < 1
2 is easily recovered. In practical computations,

Equation (A1) can be satisfied by adaptation of the unit length. Alternatively, the operator G
is used defined by

Gi j
def= −δi j + i − 1

i

(
R

z

)i+j−1 (
i + j − 2

i − 1

)
. (A2)
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The boundary condition (2) now takes the form

∞∑
j=1

Gi j ãj = R Ṙ δi1 − 1
2 RU δi2. (A3)

The operator G−1 exists if either Ṙ �= 0 or U �= 0. It is therefore easier to apply operator G
than it is to apply operator F.

The connection between F and G is given by the scaling operator E defined by

Ei j
def= R−i δi j . (A4)

For a ∈ l2(φ), ã
def= E a, F = E−1 G E, F−1 = E−1 G−1 E. Then F−1

ij = Ri−j G−1
ij . However,

only if F exists, i.e., if Equation (A1) is satisfied, E can be used to map F to G, but, in general,
E is not an isometrical operator, since the dual E∗ equals E and E∗ · E �= I.

Appendix B. Proof of a symmetry relation

To prove Equation (8), we first note that F11 = −1, and F1j = 0 if j > 1, while Fi1 is nonzero
if i > 1. Define

b̃
def= (F−1

21 , F−1
31 , F−1

41 , . . . )T , (B1a)

c̃
def= (F21, F31, F41, . . . )

T , (B1b)

Bi j
def= F−1

i+1 j+1, i, j ε IN\{0}, (B1c)

Ci j
def= Fi+1 j+1 + δi j , i, j ε IN\{0}. (B1d)

The functions F and F−1 now take the form

F =
( −1 0

c̃ C − I

)
, F−1 =

( −1 0
b̃ B

)
, (B2)

where 0 denotes the row-vector with only zeroes. The equation F·F−1 = I yields (C − I)·B =
I and −c̃ + (C − I) · b̃ = 0, whence

b̃ = (C − I)−1 c̃ = B c̃ (B3)

The diagonal function D is defined by

Di j = i + 1

i
R−1−2i δi j . (B4)

Since

(D · C)i j = z−1−i−j (i + j)! {i! j !}−1 , (B5)
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the functions D ·C, D ·(C − I) and its inverse (D ·(C − I))−1 are symmetric. Since (B3) yields

D · (C − I) · B · D−1 = D · D−1 = I,

(D · C)−1 equals B · D−1. Equation (8) merely expresses the fact that B · D−1 is symmetric.
Equation (B3) gives F−1

(i+1) 1 = b̃i = Bij c̃j . So

F−1
(i+1) 1 =

∞∑
j=1

F−1
(i+1) (j+1) F(j+1) 1 =

∞∑
j=1

F−1
(i+1) (j+1)

j

j + 1
R2j+1 z−j−1.

If Equation (8) is used to switch the indices, Equation (9) is obtained.

Appendix C. Derivation of Equations (42) and (43)

The Leibniz theorem in its general form reads

d

dt

∫ ∫ ∫
f dV=

∫ ∫ ∫
∂f

∂t
dV+

∫ ∫
f 
u · n dS (C1)

for any function f ∈ C∞. The volume of integration is Vb. Take f to be an arbitrary
coordinate function, xi , to find

∫ ∫
xi u · n dS = d

dt

∫ ∫ ∫
xi dV−

∫ ∫ ∫
∂xi

∂t
dV= d

dt

∫ ∫ ∫
xi dV= d

dt

(
xc,iVb

)
.(C2)

Using (41) and (C2), we find Equation (42). Using the divergence theorem, we find∫ ∫
xi nj dS = δij Vb. (C3)

The other integral of (42) yields

xc

∫ ∫
vd · n d2x +

∫ ∫
x′
i vd · n dS. (C4)

Taking f = 1 in (C1) we obtain

d

dt
Vb = vc ·

∫ ∫
n dS +

∫ ∫
vd · n dS,

which can be combined with∫ ∫
n d2x = 0 (C5)

to give∫ ∫
vd · n dS = d

dt
Vb. (C6)

We now combine (42), (C3), (C4), and (C6) to obtain

d

dt
(xc,i Vb) = vc,i Vb + xc,i

dVb

dt
+
∫ ∫

x′
i vd · n dS. (C7)
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The chain rule gives

d

dt
(xc,i Vb) = vc,i Vb + xc,i

dVb

dt
.

Equation (C7) therefore yields Equation (43).
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